

LA-UR-21-28034

Approved for public release; distribution is unlimited.

Title: Exploring the Role of Viscosity in Inertial Confinement Fusion

Implosions

Author(s): Dumitru, Ioana Diana

Angermeier, William Scheiner, Brett Stanford Sauppe, Joshua Paul

Intended for: Report

Issued: 2021-08-13 (rev.1)

Exploring the Role of Viscosity in Inertial Confinement Fusion Implosions

Students: Alex Angermeier and Ioana Dumitru Mentors: Brett Scheiner and Joshua Sauppe

XCP Computational Physics Student Summer Workshop Final Presentations August 10-12, 2021

Alex Angermeier

- Education
 - B.S. in Physics and Applied Mathematics
 - Pursuing PhD in Physics
- Research Interests
 - Computational simulations of warm dense matter
 - Development of wave packet molecular dynamics methods
 - Z-pinch and other pulsed power experiments
- Personal Interests
 - Bladesmithing
 - learning Punjabi

Ioana Dumitru

Education

B.S in Mechanical Engineering

Research Interest include:

- Using simulations to understand events that impact the environment (energy/water systems, wildfires, etc.)
- Inverse Modeling

Personal Interests

- Tropical plants
- Working on cars
- Camping

General Inertial Confinement Fusion (ICF) Implosions

S. Craxton et al. Physics of Plasmas 22, 110501 (2015)

Hydrodynamic Instabilities

Rayleigh-Taylor

$$a_k(t) = a_k(0)e^{-\gamma(k)t}$$

S. Craxton et al. Physics of Plasmas 22, 110501 (2015)

Hydrodynamic Instabilities are Stabilized using Viscosity

resistance of a fluid to motion.

Plot showing how viscosity dampens the growth rate.

Two-Pronged Approach to Understand Viscosity in Plasmas

Alex: micro scale approach

Molecular Dynamics Simulation (LAMMPS):

- Develop and validate a two component plasma input deck.
- Calculate the viscosity for CH mixtures at different thermodynamic conditions.

Ioana: macro scale approach

Radiation Hydrodynamics Simulation (xRage):

- Fuel target design
- Empirical calculations of viscosity
- Large sweep of physical parameter space for ICF Implosion.

Methods and Results - Molecular Dynamics (MD) with LAMMPS

One Component Plasma (OCP)

OCP: Electrons are treated as a uniform neutralizing, non-polarizable background, and there is one mobile ion species.

- lons interact through the Coulomb potential.
- Characterized through Coulomb coupling parameter:

$$\Gamma = \frac{\langle \mathsf{Potential Energy} \rangle}{\langle \mathsf{Kinetic Energy} \rangle}$$

- $\Gamma > 1$: plasma is strongly coupled
- Γ < 1 : plasma is weakly coupled (classical plasma physics regime)

Two Component Plasma (TCP)

TCP: Similar to OCP, except there are two mobile ions in the plasma.

- Average values for the two ion species: $\langle P \rangle = x_1 P_1 + x_2 P_2$, P represents a physical ion quantity [1].
 - n_i = number density of ion species i
 - $x_i = n_i/n =$ mole fraction of ion species i
- Treat TCP in a similar manner as the OCP
 - Single coupling parameter, plasma frequency, ion sphere radius

$$\bar{\Gamma} = x_1 \Gamma_1 + x_2 \Gamma_2 = \left\langle Z^{\frac{5}{3}} \right\rangle \left\langle Z \right\rangle^{\frac{1}{3}} \Gamma_0$$

Estimated Coulomb coupling for TCP [1]

$$\omega_p = \sqrt{\frac{n \left\langle Z \right\rangle^2 e^2}{\epsilon_0 \left\langle m \right\rangle}}$$

Aggregate plasma frequency [1]

- ullet $\Gamma_0 = \mathsf{OCP}$ Coulomb coupling parameter ullet $\langle Z
 angle = \mathsf{average}$ charge state of the TCP

a = mean ion sphere radius

• $\langle m \rangle$ = average mass of the TCP

Transport coefficients and Green-Kubo (GK) relation

- Relates thermodynamic fluxes and forces
 - flux (transport phenomena) = rate of flow of a property (i.e. mass, energy, momentum) per unit area [1]
 - Viscosity (η) relates the momentum flux to the velocity gradient.
- GK relations connect equilibrium fluctuations of fluxes to transport coefficients[2].

Shear viscosity [2,3]:
$$\eta = \frac{1}{Vk_BT} \int_0^\infty \left\langle \sigma_{xy}(t)\sigma_{xy}(0) \right\rangle_{eq} dt$$

- $\circ \langle \sigma_{xy}(t)\sigma_{xy}(0)\rangle_{eq}$ = shear stress autocorrelation function
- o V is the volume of the system

- . B. R. Bird, E. N. Lightfoot, and W. E. Stewart, Transport Phenomena (Wiley, New York, NY, 2007).
- 2. M.S. Green, The Journal of Chemical Physics 22, 398 (1954).
- 3. J. Daligault, K. Ø. Rasmussen, and S. D. Baalrud, Physical Review E 90, (2014).

Molecular Dynamics Methods

Using MD to extract viscosity

- Equilibrate TCP system.
- Run the TCP simulation.
- Output shear stress $(\sigma_{\alpha\beta})$ in time intervals.

$$\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{\it kin} + \sigma_{\alpha\beta}^{\it pot}$$

$$\sigma_{\alpha\beta}^{kin} = \frac{1}{V} \sum_{i=1}^{N} m(\mathbf{v}_i \cdot \hat{\alpha}) (\mathbf{v}_i \cdot \hat{\beta})$$

$$\sigma_{\alpha\beta}^{pot} = \frac{1}{2V} \sum_{i=1}^{N} \sum_{i \neq j}^{N} \frac{(\mathbf{r}_{ij} \cdot \hat{\alpha})(\mathbf{r}_{ij} \cdot \hat{\beta})\phi'(r_{ij})}{r_{ij}}$$

Using MD to extract viscosity

Plot of Autocorrelation

TCP H-C Mix: $\bar{\Gamma} = 24.555654554$

$$\langle \sigma_{xy}(t)\sigma_{xy}(0)\rangle_{eq}$$

Los Alamos NATIONAL LABORATORY

Plot of Cumulative Integral

TCP H-C Mix: $\bar{\Gamma} = 24.555654554$

$$\eta = \frac{1}{Vk_BT} \int_0^\infty \left\langle \sigma_{xy}(t)\sigma_{xy}(0) \right\rangle_{eq} dt$$

LAMMPS TCP input deck verification and validation

- Compare with well developed OCP deck
 - use the same ion for both ions in TCP deck
 - Compare equilibrium thermodynamics
 - Compare radial distribution functions (rdf)
- Use the impurity limit
 - limit the amount of one type of species to zero and compare with OCP
- Test for simulation convergence.

Molecular Dynamics Results

Results

♦ cross-potential viscosity shown is the absolute value as the cross-potential viscosity is actually negative

Methods and Results - Radiation Hydrodynamics with xRAGE

Characterizing ICF Implosions

Choose Inputs:

- Laser Inputs:
 - Laser pulse shapes
- Target Design
 - Carbon
 - Beryllium
 - Aluminum
 - Chromium

Note: All ablators were mass matched.

Run Model:

xRAGE:

 An Eulerian radiation-hydrodynamics code with adaptive mesh refinement (AMR).

Laser Shapes Used

- Total energy for all laser shapes are the same
- Will continue discussion with square wave laser due to small variation in results.

Two Viscosity Models for Different Plasma Regimes

Viscosity for Γ > 10:

$$\eta_{ ext{YVM}}^{\star}(\kappa,\Gamma) = 0.0051 \frac{\Gamma_{m}}{\Gamma} + 0.374 \frac{\Gamma}{\Gamma_{m}} + 0.022$$

S. Bergeson et al. Physics of Plasmas 26 100501 (2019)

Viscosity for Γ < 10:

$$\eta^*(\Gamma) = \frac{\eta}{mna^2\omega_p}$$

$$= \frac{a}{\Gamma^{5/2}\ln\left(1 + \frac{b}{\Gamma^{3/2}}\right)} \frac{1 + a_1\Gamma + a_2\Gamma^2 + a_3\Gamma^3}{1 + b_1\Gamma + b_2\Gamma^2 + b_3\Gamma^3 + b_4\Gamma^4}$$

J. Daligault et al. Physical Review E90, 033105 (2014)

Kinematic Viscosity along Material Interface for Square Wave Laser

Instability Growth Rate for Square Wave Pulse

Amplitude of Instability

$$a_k(t) = a_k(0)e^{-\gamma(k)t}$$

Instability Growth Rate

$$\gamma_l = \sqrt{A k R / \eta + \nu^2 k^4} - (\nu + D_{12}) k^2$$

v = kinematic viscosity

A = density ratio of DT Gas to Ablator

k = wave number

 \ddot{R} = acceleration at material interface

Instability Growth Rate for Square Wave Pulse in DT Gas

1.5 ns									
	V Shell cm^2/s	V Gas cm^2/s	А	R um	<i>R</i> cm/s^2	Z Shell			
С	1.718	28.17	0.282	1040	-4.407	3.85			
Ве	3.842	40.59	0.355	1020	-0.093	2.63			
Al	0.456	28.48	0.275	1015	-2.563	6.96			
Cr	0.124	3.28	0.296	1098	-4.602	12.83			

Instability Growth Rate for Square Wave Pulse in DT Gas

1.8 ns									
	V Shell cm^2/s	V Gas cm^2/s	А	R um	<i>R</i> cm/s^2	Z Shell			
С	2.88	36.38	0.246	789	-5.191	3.66			
Ве	94.26	253.6	0.074	699	-2.636	2.195			
Al	0.287	25.59	0.329	870	-3.960	7.922			
Cr	0.144	6.40	0.295	980	-7.324	11.37			

Conclusions

One-Component Materials

- Adding pickets to the pulse shape did not affect the viscosity substantially.
- While Be seems to be most effective in dampening instabilities while Cr is the least effective.

MD-Simulation of TCP

- LAMMPS TCP input deck was successfully verified against OCP simulation.
- Successfully calculated the viscosity of a CH TCP for a range of Γ values.

Future Work

- Submitted Abstracts to the Division of Plasma Physics (DPP) Annual Meeting and will present work there
- Continue working with Brett Scheiner on two-component plasmas.

